

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Why all those braces? And why are my titles being recapitalized?

Zotero does all its work in UTF-8 Unicode, which is absolutely the right thing to do. Unfortunately, for those shackled
to BibTeX and who cannot (yet) move to BibLaTeX, unicode is a major PITA. Also, Zotero supports some simple HTML markup
in your references that Bib(La)TeX won't understand.

BBT will convert from/to HTML/LaTeX; Currently supports <

i>

⇔

\emph &

 \textit, <

b>

⇔

\textbf,
<

sub>

⇔

_{...}, <

sup>

⇔

^{...} and <

sc>

⇔

\textsc{...}; more can be added on request.
BBT contains a comprehensive list of LaTeX constructs, so stuff like \"{o} or \"o will be converted to their unicode
equivalents on import, and their unicode equivalents back to \"{o} if you have that option enabled (but you don't
have to if you use BibLaTeX, which has fairly good Unicode support).

Gotchas

	In titles of English references, you can control capitalization by surrounding parts of the text in Text between these will not have their capitalization changed in any way. See more on this
below in the section Mapping fields.

	In names, you can force first names like Philippe to be exported to {\relax Ph}ilippe (which causes it to get
initial Ph. rather than P. in styles that do initials) by adding a end of guarded area [http://www.fileformat.info/info/unicode/char/0097/index.htm] character between Ph and ilippe.

Hidden features

	csquotes support; if you open about:config and set
extensions.zotero.translators.better-bibtex.csquotes to a string of character pairs, each pair will be assumed to be
the open and close parts of a pair and will be replaced with a \\enquote{...} construct.

Mapping Fields

There isn't a straightforward one-to-one mapping for all Zotero to Bib(La)TeX fields. For most I can make reasonable
choices, but there are some things where Better BibTeX takes a little more liberties with your references in order to
get sensible output.

Title fields in particular are a total mess. Zotero recommends having your titles in sentence
case [https://zotero-manual.github.io/zotero-manual/adding-items#sentence-and-title-case] because that's what the
embedded citation processor expects, but of course, BibLaTeX expects your titles to be in Title Case... but only if
they're in English. Nice. In order to translate the Zotero recommendation into Bib(La)TeX best practice, BBT will
title-case the titles of English references. English references, as far as BBT is concerned, are those references that
have their language explicitly set to an English language (american counts as English for example), and those
references that have no explicit language set. To do this, BBT uses the same title-caser that Zotero uses to produce
title-cased styles such as Chicago.

The titles so modified will then pass through your Bib(La)TeX processor, which will in turn try to lowercase or
initial-caps some words and not others -- for English references. But then sometimes, you want words that have capitals
to keep. BBT assumes that if a word has at least one capital letter (subject to some rather complex exceptions)
you meant it to be there, and you want BibTeX to leave it alone no matter what. To do that, it
wraps those (strings of) words in those double braces. This is to let BibTeX know that ISDN may not be changed to
isdn or Isdn, regardless of the bibliography style in play.

The simplest approach would be to wrap title fields in extra braces as a whole, and some sites will erroneously
recommend doing so (looking at you here MIT librarians). But there are styles do need to recapitalize parts of the
title (for example to selectively downcase the titlecasing), and having the whole field so wrapped interferes with that. So Better BibTeX wraps individual words -- or strings
of those words -- that have capitals in them with double braces.

For English titles BBT will Title Case and brace-protect your titles on output. Except, those Title Cased words which BBT changed itself will not be wrapped in double-braces,
as it is OK for the styles to change casing for those, depending on the style at play. So I like ISDN heaps better than dialup would output to I Like {% raw %}{{ISDN}}{% endraw %} Heaps Better than Dialup. Apparently non-English titles are supposed to
be in sentence case, so BBT doesn't touch those.

You can steer this process somewhat by enclosing the parts you don't want case manipulation on in Anything between those won't be touched by Zotero or BBT. This is formally supported by
Zotero and will work in the Word/LibreOffice plugins as well as in the BibTeX export. This will be required for words
you wish to always keep lowercase, for example. Also, if
you don't generally use Zotero for generating bibliographies but just for BibTeX reference management, you can turn on the hidden
preference
extensions.zotero.translators.better-bibtex.suppressTitleCase
to keep BBT from applying title-casing, but take note that if you do this, the
bibliographies you get from Zotero and the bibliograhies you get through Bib(La)TeX will differ, and you can't complain
about this. Brace protection cannot be turned off.

Why the double braces?

But why then the double-braces ({% raw %}{{...}}{% endraw %}) rather than the commonly recommended single braces ({...})?

This is not because of some arcane aesthetic preference, but because the Bib(La)TeX case protection rules are incredibly
convoluted (#541 [https://github.com/retorquere/zotero-better-bibtex/issues/541],
#383 [https://github.com/retorquere/zotero-better-bibtex/issues/383]). For example, here are some "interesting" cases
that BBT has learned to deal with. Did you know that

	{\emph{Homo sapiens}} un-case-protects Homo sapiens? It sure was a surprise to me. So
\emph{Homo sapiens} is case-protected (will not be recapitalized by Bib(La)TeX), but {\emph{Homo sapiens}} is not case-protected so it will be recapitalized. So to get
predictable behavior, this is written out as {% raw %}{{\emph{Homo sapiens}}}{% endraw %}.

	casing behavior over the whole reference field depends on whether there's a slash-command at the first position [https://github.com/retorquere/zotero-better-bibtex/issues/541#issuecomment-240156274] of the title?

	apparently [https://github.com/retorquere/zotero-better-bibtex/issues/541#issuecomment-240999396], to make sure that Reading HLA Hart's: <i>The Concept of Law</i> renders as expected means I have to output the astoundingly ugly {% raw %}{Reading {{HLA Hart}}'s: {{{\emph{The Concept}}}}{\emph{ of }}{{{\emph{Law}}}}}{% endraw %}?

The double-bracing is the only unambiguous rule I could construct that consistently gets the rendered reference right (so far).

Bib(La)TeX provides a never-ending stream of edge cases, which BBT tries to decide algorithmically. I try to keep the resulting file as pretty as I can (I'm sensitive to the aesthetics myself), but the target is best described as "given reasonable input, generate well-rendering output", and reasonable-to-well-rendering in the BBT case will have to include "follows Zotero recommendations for storing references" and "prefer intent-preserving LaTeX over pretty-looking LaTeX".

Bib(La)TeX be crazy.

You are a hardcore LaTeX user

If you'd really just rather hand-code your LaTeX constructs, BBT makes that possible:

	You can add literal LaTeX anywhere in your reference by surrounding it with <pre>....</pre> tags. BBT will
convert to/from unicode and (un)escape where required but will pass whatever is enclosed in the pre tags unchanged.

	An entry tagged with #LaTeX (case-sensitive!) will have all fields exported as if they're wrapped in
<pre>...</pre>, so you can include LaTeX markup in your references.

AUX Scanner

You can populate a reference collection from an existing paper by scanning the aux file generated by bibtex. AUX Scanning can be triggered from the Tools menu. The scanner will read your
AUX files and will put references you cited in the associated LaTeX
document into the current collection, and will add a note for references
cited in the LaTeX document but which do not exist in your Zotero
library. Note that the citation keys must be present in your library
before the scan is started -- BBT will not create new references for
citekeys it doesn't already know about.

Bundled translators

Better BibTeX bundles 5 translators you might care about:

Export

These translators are supported by the auto-export functionality built into Better BibTeX:

	Better BibLaTeX exports references in BibLaTeX format (but better, natch)

	Better BibTeX exports references in BibTeX format

	Better CSL JSON exports references in pandoc-compatible CSL-JSON format, with added citation keys and parsing of metadata

	Better CSL YAML exports the same as the Better CSL JSON exporter, but in YAML format

	Collected Notes exports just notes -- standalone notes and notes attached to references, not the extra field -- to HTML. This way, Zotero can serve as a (very) simple research notebook.

Import

	Better BibTeX exports and imports references in Bib(La)TeX format

Included, but you should usually ignore it.

I would hide these if I could. They're used for Zotero's drag-and-drop citation facility, and for Better BibTeX debugging.

	BetterBibTeX JSON exports and imports references in BetterBibTeX debug format. The error reporter uses this format

	Better BibTeX Quick Copy exports citations to be copy-pasted into your LaTeX/Markdown document in the form \cite{< key >}/[@key]

Cite as you Write

Good news for TeXnicians and those down with Mark (aka Markdown, RST, whatnot): this is the time to go pester the author of your favorite editor for Zotero integration!

Editor integration

vim

Create a script called (e.g.) cite in your path with the following content:

#!/bin/sh

curl -s http://localhost:23119/better-bibtex/cayw?format=citet

Now, in vi, you can execute :r!cite in command mode to get your references inserted

Zotero Citations for Atom

A sample implementation of real integration (rather than the working-but-clunky workarounds using paste) can be found in the Zotero Citations [https://atom.io/packages/zotero-citations] package for the Atom [http://atom.io] editor.

Scrivener 2.0/Marked 2 for Mac

Dave Smith has gracefully written instructions [http://davepwsmith.github.io/academic-scrivener-howto/] on how to set up Scrivener 2.0 and Marked 2 for OSX to use the CAYW picker, including ready-to-run apps

Linux

	Emma Reisz has gracefully written instructions and scripts [https://emmareisz.github.io/zotpicknix/] for setting up CAYW on Linux.

	ConorIA has more versatile solution called zotero4overleaf [https://gitlab.com/ConorIA/shell-scripts/tree/master/zotero4overleaf], which was inspired by Emma's scripts.

DIY

BBT now exposes (if you have HTTP export on in the preferences) an URL at http://localhost:23119/better-bibtex/cayw. The url accepts
the following URL parameters:

parameter	
probe	If set to any non-empty value, returns ready. You can use this to test whether BBT CAYW picking is live; it will not pop up the picker
format	Set the output format
clipboard	Any non-empty value will copy the results to the clipboard
minimize	Any non-empty value minimize all Firefox windows after a pick

The following formats are available:

	latex.

	cite is an alias for latex with the assumption you want the cite command to be cite

	mmd: MultiMarkdown

	pandoc. Accepts additional URL parameter brackets; any non-empty value surrounds the citation with brackets

	asciidoctor-bibtex

	scannable-cite for the ODF scanner [https://zotero-odf-scan.github.io/zotero-odf-scan/]

	formatted-citation: output formatted citation as per the current Zotero quick-export setting, if it is set to a citation style, and not an export format

	formatted-bibliography: output formatted bibliography as per the current Zotero quick-export setting, if it is set to a citation style, and not an export format

	translate invokes a Zotero export translator. Extra URL parameters allowed:

	translator: stripped name of one of the BBT translators (lowercased, remove 'better', and only the letters, e.g. biblatex or csljson), or a translator ID. Defaults to biblatex.

	exportNotes: set to true to export notes

	useJournalAbbreviation: set to true to use journal abbreviations

The picker passes the following data along with your picked references if you filled them out:

field	
locator	the place within the work (e.g. page number)
prefix	for stuff like "see ..."
suffix	for stuff after the citations
suppress author	if you only want the year

However not all output formats supports these. Pandoc and scannable cite are the richest ones, supporting all 4. MultiMarkdown supports
none. LaTeX supports all 4, in a way; if you choose suppress author for none or all of your references in a pick, you
will get the citation as you would normally enter it, such as \\cite{author1,author2}, or
\\citeyear{author1,author2}. If you use locator, prefix, suffix in any one of them, or you use suppress author
for some but not for others, the picker will write them out all separate, like \cite[p. 1]{author1}\citeyear{author2},
as LaTeX doesn't seem to have a good mechanism for combined citations that mix different prefixes/suffixes/locators. The formatted- formats will ignore these.

The clipboard option can be used as a workaround for editors that haven't gotten around to integrating this yet. If
you use this option you will probably want to bind to a hotkey, either system-wide (which is going to be platform-dependent, I know
AutoHotKey [http://www.autohotkey.com] works for windows, for OSX Karabiner [https://pqrs.org/osx/karabiner/] ought to
do the job, and for Linux you could give IronAHK [https://github.com/polyethene/IronAHK] or
autokey [https://code.google.com/p/autokey/] a shot).

For example, if you call up http://localhost:23119/better-bibtex/cayw?format=mmd&clipboard=yes, the Zotero citation picker will pop up. If you then select two references that happen to have cite keys adams2001 and brigge2002, then

	the response body will be [#adams2001][][#brigge2002][], and

	[#adams2001][][#brigge2002][] will be left on the clipboard

Playing around

For testing for other markdown formatters, you can construct simple references yourself, using:

	citeprefix, default empty, for text to put before the full citation.

	citepostfix, default empty, for text to put after the full citation.

	keyprefix, default empty, for text to put before each individual citekey

	keypostfix, default empty, for text to put after each individual citekey

	separator, default ,, for text to put between citekeys

but if you need an extra format, just ask.

Generating citekeys for your references

The BibTeX citations keys generated by the standard Zotero exporters are fully auto-generated, using an algorithm that usually generates unique keys. For serious LaTeX
users, "usually" presents the following problems:

	If a non-unique key is generated, which one gets postfixed with a distinguishing character is essentially
non-deterministic.

	The keys are always auto-generated, so if you correct a typo in the author name or title, the key will change

	You can't see the citation keys until you export them

For a LaTeX author, the citation keys have their own meaning, fully separate from the other reference data, even if
people usually pick a naming scheme related to them. As the citation key is the piece of data that connects your
bibliography, this is a piece of data you want to have control over. BBT offers you this control:

	Set your own, fixed citation keys

	Stable citation keys, without key clashes. BBT generates citation keys that take into
account other existing keys in your library
in a deterministic way, regardless of what part of your library you export, or the order in which you do it.

	Generate citation keys from JabRef patterns

You can also

	Drag and drop LaTeX citations to your favorite LaTeX editor

	Show both pinned (fixed) citation keys and dynamically generated ones in the reference list view

	Search for citation keys (if you select "All fields and tags" in the search box)

Set your own, fixed citation keys

You can fix the citation key for a reference by adding the text "bibtex: [your citekey]" (sans quotes) anywhere in the
"extra" field of the reference, or by using biblatexcitekey[my_key]. You can generate a fixed citation key by
selecting references, right-clicking, and selecting "Generate BibTeX key".

Drag and drop/hotkey citations

You can drag and drop citations into your LaTeX/Markdown/Orgmode editor, and it will add a proper \cite{citekey}/[@citekey]/[[zotero://select...][@citekey]. The cite command is
configurable for LaTeX by setting the config option in the [[Preferences|Configuration]]. Do not include the leading backslash. This feature requires a one-time setup: go to Zotero preferences, tab Export, under Default Output Format, select "Better BibTeX Quick Copy", and choose the Quick Copy format under the Citation keys preferences for BBT.

Find duplicate keys through integration with Report Customizer [https://github.com/retorquere/zotero-report-customizer]

The plugin will generate BibTeX comments to show whether a key conflicts and with which entry. BBT integrates with
Zotero: Report Customizer [https://github.com/retorquere/zotero-report-customizer] to display the BibTeX key plus any
conflicts between them in the zotero report.

Configurable citekey generator

BBT also implements a new citekey generator for those entries that don't have one set explicitly; the formatter pattern language mostly follows
the JabRef key formatting syntax [https://help.jabref.org/en/BibtexKeyPatterns] in the Better BibTeX
preferences (you can get there via the Zotero preferences, or by clicking the Better BibTeX "Preferences" button in the addons pane.

The default key pattern is {{ site.data.preferences.citekeyFormat }}; if you have papers that use keys which were generated by the key generator of the standard Bib(La)TeX exporters of Zotero you may want to use [zotero:clean] instead in order to ease migration from existing exports for people who previously used the standard Zotero Bib(La)TeX exports. You will be offered this choice on first run of BBT.

A common pattern is [auth:lower][year], which means

	last name of first author without spaces, in lowercase

	year of publication if any,

	a letter postfix in case of a clash (this part is always added, you can't disable it)

note that changing the pattern used to cause all your non-fixed keys to be regenerated in Zotero 4. In Zotero 5, this is no longer the case; changing a pattern will only affect references being created/changed after you changed the pattern. If you want your keys to update after a pattern change you will have to select your references, right-click, and select Refresh. This will not affect keys you have pinned.

If you want to get fancy, you can set multiple patterns separated by a vertical bar, of which the first will be applied
that yields a non-empty string. If all return a empty string, a random key will be generated. Note that in addition to
the 'special' fields JabRef also allows all 'native' fields as key values; the plugin does the same but allows
for Zotero native fields (case sensitive!) not Bib(La)TeX native fields. The possible fields are:

 {% for row in site.data.pattern.fields %}

 {% for field in row %}
 	{{ field }}
 {% endfor %}

 {% endfor %}

Advanced usage

The full list of functions (extract data from your reference into your citekey) and filters (change the extracted data) is:

Functions

{% for func in site.data.pattern.functions %}

	{{ func[0] }}: {{ func[1] }}
{% endfor %}

	0: a pseudo-function that sets the citekey disambiguation postfix to numeric (-1, -2, etc, like the standard Zotero
Bib(La)TeX translators do) rather than alphabetic (a, b, c). Does not add any text to the citekey otherwise.

	>X: a pseudo-function which aborts the current pattern generation if what came before it is X characters or less ([>0] is a typical use. You'd typically use this with something like [auth][>0][year]|[title][year] which means if there's no author you get title-year rather than just year.

auth, authIni, edtr, ... and all the author-related fields that mimic the JabRef equivalents also have capitalized versions (so Auth, AuthIni, Edtr, ...) which follow the same algorithm but do not have any cleaning (diacritic folding, space removal, stripping of invalid citekey characters) applied. These can be used to pass through the filters specified below much like the fields from the table above. See also "usage note" below.

Flags

	+initials adds initials to any author name function. Specify using e.g. [auth+initials]

Filters

{% for filter in site.data.pattern.filters %}

	{{ filter[0] }}: {{ filter[1] }}
{% endfor %}

	(x): The string between the parentheses will be inserted if the field marker preceding this modifier resolves to an empty value. The placeholder x may be any string. For instance, the marker [volume:(unknown)] will return the entry's volume if set, and the string unknown if the entry's volume field is not set.

Usage note: the functions condense, skipwords, capitalize and select rely on whitespaces for word handling. The JabRef functions strip
whitespace and thereby make these filter functions sort of useless. You will in general want to use the fields from the
table above, which give you the values from Zotero without any changes.

 Configuration

Configuration

The Better BibTeX Configuration can be found under the regular Zotero preferences pane, tab 'Better Bib(La)TeX'.

The configuration of Better BibTeX is a little baroque compared to the standard Zotero Bib(La)TeX exporters (which only have hidden preferences). The defaults should just work, but here's an attempt to describe what they do.

Making any change here will drop your entire export cache. This is usually not a problem unless you have a really large library, but you can read about what is involved here.

Citation keys

QuickCopy format

default: LaTeX

Used for drag-and-drop/quick copy using Better BibTeX citekeys. In the Zotero "Export" pane, choose Better BibTeX Quick Copy as the default export format for quick copy, and choose the desired format for the drag-and-drop citations here.

Options:

	LaTeX

	Cite Keys

	Pandoc

	Org-mode

	org-ref

	Atom (https://atom.io/packages/zotero-citations)

	GitBook

	Select link

LaTeX command

default: "cite"

Used for drag-and-drop/quick copy citations in LaTeX format. Set the desired LaTeX citation command here. If you set this to citep, drag-and-drop citations will yield \citep{key1,key2,...}

Surround Pandoc citations with brackets

default: off

Used for drag-and-drop/quick copy citations in Pandoc format. You can use this option to select whether you want to have these pandoc citations surrounded with brackets or not.

Citation key format

default: "​[auth][shorttitle][year]"

Set the pattern used to generate citation keys. The format of the keys is documented here.

Force citation key to plain text

default: on

If you have deviated from the default citation key format pattern by specifying your own, you may wind up with non-ASCII characters in your citation keys. You can prevent that using the fold function at the appropriate place in your pattern, but checking this checkbox will just apply fold to all your keys.

On conflict, non-pinned keys will be

default: kept (causes key duplicates)

This determines what happens if you pin a key to a value that is already in use in a different reference but not pinned there. Neither are ideal, you just get to pick your poison. If you let BBT change the non-pinned key by adding a postfix character, the citation key changes which could be problematic for existing papers. if you keep the non-pinned key as-is, your library now has duplicate keys.

Options:

	postfixed (causes key changes)

	kept (causes key duplicates)

Export

When a reference has both a DOI and a URL, export

default: both

Does what it says on the tin, really. If a reference has both a DOI and an URL, you can choose to have them both exported, or either one of them.

Options:

	both

	DOI

	URL

Export unicode as plain-text latex commands

default: off

BibLaTeX actually has really good Unicode support, so you generally want this off. But for some geezers such as me it is simply more pleasing to have things like accented characters translated to their equivalent LaTeX constructs on export.

Export unicode as plain-text latex commands (recommended)

default: on

BibTeX has really spotty Unicode support, so you generally want this on. It will translate things like accented characters to their equivalent LaTeX constructs on export.

Assume single-word strings to be externally-defined @string vars, and thus not surrounded by braces

default: off

When enabled, single-word strings will be assumed to be externally-defined @string vars, and thus not surrounded by braces. If you don't know what this means, leave it off.

Disregard name prefixes when sorting

default: off

Name handling is a lot more complex than I had ever thought it to be. A lot more complex. BibTeX has really limited ways of dealing with names with particles (van, von, de, etc). If you turn this on, BBT will add code to have van Gogh sorted under Gogh.

Fields to omit from export (comma-separated)

default: ""

If there are some fields you don't want in your bibtex files (such as note for example), add a list of them here, separated by comma's.

Add URLs to BibTeX export

default: no

BibLaTeX supports urls in your references natively; BibTeX does not. For this reason, URLs are omitted from BibTeX exports by default. Using this setting you can have them added to your exports either in a note field (not as clean, but compatible with BibTeX out of the box), or in a url field (requires extra packages to be loaded, or bibtex will error out).

Options:

	no

	in a note field

	in a URL field

Include JabRef-specific metadata:

default: no

Export JabRef-specific information fields; timetamps and groups for collections.

Options:

	no

	for JabRef 3

	for JabRef 4

Include comments about potential problems with the references

default: off

Generate quality reports for exported references.

Use BibLaTeX extended name format (requires biblatex 3.5)

default: off

Use the extended biber 2.7 format for names with particles - only works in BibLaTeX 3.5 or later. This biblatex has a new (less ambiguous) way to store creator names. It's technically superior, but the LaTeX world moves slowly, so many people won't have it yet. But if you're an early adopter, you can enable it here

Journal abbreviations

Automatically abbreviate journal title if none is set explicitly

default: off

If set, generates journal abbreviations on export using the Zotero journal abbreviator, according to the abbreviation style selected in the list below the checkbox.

Automatic export

Automatic export

default: On Change

Determines when automatic exports are kicked off. Having it disabled still marks auto-exports as needing updates, so when you re-enable it, those exports will start. On-change means exports happen whenever a reference in the export changes/is added/is removed. On idle does more or less what Disabled (that is, no exports but mark as needing changes), but will kick off exports when your computer is idle. You mostly want this if your computer is performance-constrained (aka slow).

Options:

	Disabled

	On Change

	When Idle

Advanced

Warn me when changing citation keys in bulk

default: 10

For those who are curious about what the "Clear/Generate BibTeX key" right-click options do, this will warn you if you are doing this on more than 10 (default) at the same time, to prevent your curiosity from changing all your citation keys at once.

postscript

default: ""

Snippet of javascript to run after each reference generation.

import @string definitions

default: ""

If you have externally maintained @string vars paste them here and they will be resolved for subsequent imports

Hidden preferences

The following settings are not exposed in the UI, but can be found under Preferences/Advanced/Config editor.

All are prefixed with extensions.zotero.translators.better-bibtex. in the table you will find there

autoAbbrevStyle

default: ""

Select the style for auto-abbreviation. Only applicable to Juris-M; in Zotero, the style for automatic abbreviation is not configurable.

autoExportIdleWait

default: 10

Number of seconds to wait after your system goes idle before kicking off auto-exports.

cacheFlushInterval

default: 5

How often the Better BibTeX database should be saved to disk. Defaults to once every 5 seconds. Note that your database is always saved when your computer goes idle, or when you exit Zotero.

csquotes

default: ""

Enables csquotes support.

skipWords

default: "a,ab,aboard,about,above,across,after,against,al,along,amid,among,an,and,anti,around,as,at,before,behind,below,beneath,beside,besides,between,beyond,but,by,d,da,das,de,del,dell,dello,dei,degli,della,dell,delle,dem,den,der,des,despite,die,do,down,du,during,ein,eine,einem,einen,einer,eines,el,en,et,except,for,from,gli,i,il,in,inside,into,is,l,la,las,le,les,like,lo,los,near,nor,of,off,on,onto,or,over,past,per,plus,round,save,since,so,some,sur,than,the,through,to,toward,towards,un,una,unas,under,underneath,une,unlike,uno,unos,until,up,upon,versus,via,von,while,with,within,without,yet,zu,zum"

list of words to skip in title when generating citation keys

jurismPreferredLanguage

default: ""

When language alternates are present in Juris-M, this is the language BBT will pick.

biblatexExtendedDateFormat

default: on

Support for EDTF dates in biblatex

suppressTitleCase

default: off

If you're dead-set on ignoring both BibTeX/BibLaTeX best practice and the Zotero recommendations on title/sentence casing, set this preference to "true" to suppress title casing for English references.

itemObserverDelay

default: 100

I've had reports where Zotero notifies extensions that references have changed, but if BBT then actually retrieves those same references, Zotero complains they "haven't been saved yet". Super. This preference sets the number of microseconds BBT should wait after being notified before acting on the changed references.

parseParticles

default: on

Name particle handling

citeprocNoteCitekey

default: off

Replaces the "note" field with the bibtex key during citation rendering in Word/Libreoffice. Main use-case is to help migrating word documents to pandoc. This setting only takes effect during startup, so if you change it, you will have to restart Zotero to have this take effect.

scrubDatabase

default: off

Finds potential problems in the database and fixes those. This runs extremely slow at startup, don't unable this unless explicitly asked to.

lockedInit

default: off

BBT locks the UI during startup because I have been told in no uncertain terms I am not to touch the Zotero database before I get an all-clear from Zotero. This all-clear takes a fair amount of time. As BBT needs database access for generating keys, and everything in BBT depends on the keys being present, it is absolutely safest to make sure BBT initialization has completed before freeing the UI. I want to stress that during most of the lock-time, BBT is simply waiting for Zotero to complete its own initialization; try to do an export of any kind (not just BBT) or to import new references directly after Zotero has started and you'll notice that it may take a while before Zotero reacts. The lockout just puts a face on this hidden init, and prevents nasty race conditions between the BBT and Zotero initialization leading to unpredictable breakage occasionally.

If you however cannot stand the lockout during startup and you want to live dangerously, you can turn this off and hope that no race conditions bite you. If you turn this on and experience problems, you are welcome to file a bug report and I will see what I can do, but be prepared for the answer to be "turn this back on for now".

This is EXPERIMENTAL and this preference may disappear at any moment without notice.

 Customizing the export

Customizing the export

Better BibTex adds a couple of export formats to Zotero's export dialog. The Better BibTeX configuration pane can be found under the regular Zotero preferences pane, tab 'Better Bib(La)TeX'.
Through the configuration pane of BBT you can customize the BibTeX file that will be exported:

	Automated background exports. Tick 'keep updated' during export, and that's that.

	Unicode conversion: the default is to retain unicode characters on export for BibLaTeX, and to convert to LaTeX
commands (where possible) for BibTeX. You can specify whether you want to retain this default, or whether you want BBT
to always export translating to LaTeX commands, or never to do this translation.

	Recursive collection export: when exporting a collection, recursive export will include all child collections.
Note that this also sets Zotero to display collection contents recursively.

	Omit fields from export: Should you so wish, you can prevent fields of your choosing from being exported. In the
configuration screen, add a comma-separated list of BibTeX fields you do not want to see in your export. The fields
are case-sensitive, separated by a comma only, no spaces.

	Configurable citekey generator

	Push-and-Pull-Export: You can fetch your library as part of your build, using curl (for example by using the included
zoterobib.yaml arara rule), or with a BiblaTeX remote statement like
\addbibresource[location=remote]{http://localhost:23119/better-bibtex/collection?/0/8CV58ZVD.biblatex}.

	Add other custom BibLaTeX fields

BBT http export uses the general Zotero HTTP facility; please note that disabling this will disable ALL HTTP
facilities in Zotero -- including the non-Firefox plugins provided by Zotero.

Add your own BibLaTeX fields

There are three alternative methods:

Square brackets []

You can add any field you like by using something like

bibtex[origdate=1856;origtitle=An Old Title]

in the extra field of your reference. This format is very rigid, it has no quoting syntax, so you can't have =, [,
] or ; in your key names or values.

JSON5

If you need more flexibility, you can use the JSON5 [http://json5.org/] format
instead:

bibtex{
 origdate: 1856,
 origtitle: "Can contain = and ';' just fine"
}

The marker for these fields can be either bibtex, biblatex or biblatexdata, but when importing BibTeX files with
fields not supported by Zotero, the bibtex marker will be used. These fields are assumed to be valid LaTeX, and will
be exported exactly as entered.

If you want to have them LaTeX encoded, add an asterisk (*) after the marker, so
something like

bibtex*{
 origdate: 1856,
 origtitle: "Things like _ and $ will be escaped"
}

CSL fields

The final way to add fields is by using CSL fields in the format {:original-date: 1856}. These fields will not only be
exported to Bib(La)TeX, but will also be picked
up [https://forums.zotero.org/discussion/3673/original-date-of-publication/] by the Zotero Bibliography manager, even
though not all Zotero styles yet support this.

Common notes

If you add a field called referencetype using either of these methods, that value will be used as the reference type
instead of the one usually inferred from the Zotero reference type. You can use this to create, for example,
@customa{citekeyhere,} type references.

You can fix the citation key for a reference to a value of your choosing by adding the text bibtex: [your citekey]
anywhere in the "extra" field of the reference.

Note that the default biblatex styles do not seem to support origdate; you can find possible solutions for this at Stack
Exchange
here [http://tex.stackexchange.com/questions/142999/the-proper-way-to-cite-the-earliest-publication-date-in-brackets-followed-by]
and
here [http://tex.stackexchange.com/questions/55859/getting-origyear-to-work-in-biblatex].

You wanted customized...

You got customized. If you go into the Advanced preferences of BBT, find an edit field labeled Postscript, empty by default. In this, you can paste a JavaScript snippet which will be executed for each reference
generated in the Bib(La)TeX exporter. In this code, you have access to the reference just before it will be written out
and cached. Examples and the documentation-in-progress for the script environment can be found
here; feel free to add your own examples.

 FAQ

FAQ

Are there any plans to support Firefox 57+?

BBT lives where Zotero lives, and Zotero only has standalone these days [https://www.zotero.org/blog/zotero-5-and-firefox-faq/].

So no, no FF57 support, because Zotero can't have FF57 support, so by extension BBT can't.

 Installation

Installation

Install by downloading the latest release [https://github.com/retorquere/zotero-better-bibtex/releases/latest], and then in Zotero:

	In the main menu go to Tools > Add-ons

	Select 'Extensions'

	Click on the gear in the top-right corner and choose 'Install Add-on From File...'

	Choose .xpi that you've just downloaded, click 'Install'

	Restart Zotero

After the initial installation, the plugin will auto-update to newer releases, so you should need to perform the process described here only once.

Note that the default setting of BBT will generate different citekeys than Zotero would itself generate; the keys from Zotero are not always safe for use in bibtex/biber. If you want to get the stock zotero keys, set the pattern in the preferences to [zotero].

Note that BBT needs to be installed in Zotero, not Firefox. There used to be two versions of Zotero, one standalone, and one that was installed in Firefox. BBT is a Zotero extension and lives where Zotero lives; Zotero is no longer available [https://www.zotero.org/blog/zotero-5-and-firefox-faq/] as a Firefox plugin, only as standalone.

 Performance

Performance

The Better BibTeX exporters are a lot slower than the standard Zotero Bib(La)TeX exporters. If you have a small library,
you will not likely notice this, but if you have several thousand references, and you are in the habit of exporting
substantial parts of your library, or you use Markdown citation scanning [https://atom.io/packages/zotero-citations],
this gets annoying really fast.

To deal with this problem, Better BibTeX implements an extensive caching system. With a filled cache, Better BibTeX is
substantially faster than the default Zotero exporters. Specifically for automatic background exports
or Markdown citation scanning [https://atom.io/packages/zotero-citations], a filled cache is
a good thing to have.

For technical reasons, if you export the file attachments as part of your export, the cache is skipped altogether, so
this will always be slow. This is also why you cannot set up auto-exports with file exports.

TL;DR

There's a more technical explanation below, but the TL;DR version is that you want to have a filled cache. If you want
to get it over with, export your entire library (once, no need to tick 'Keep Updated') using the 'Better BibTeX' format
and go grab coffee (or lunch, depending on the size of your library). After that, things should be much better.

Here are some numbers from a test with a library consisting of 1241 references with 284 attachments (the attachments are only linked to, not exported):

Exporter	
Zotero	14.1s
Better BibTeX, empty cache	53.0s
Better BibTeX, filled cache	3.7s

Caching

Initial state

Initially, your cache will be empty. The first export of any reference using Better BibTeX will therefore be a little
over 14 times as slow as subsequent exports. After that, it gets pretty zippy, as the process of exporting a reference
will also cache that reference for the current export settings. This means if you export once with, and once without
notes (one of the options in the export popup), you will hit an empty cache twice. If you set up an automatic export,
the export you do that registers it for auto-update will already be the first export, so if your references weren't
cached already, they will be before subsequent auto-exports.

Cache refresh

The cache entry for a reference is retained as long as you do not make any changes to that reference. Any change you
make will drop all cache entries for that reference (so all variants you had for different export options). The cache
for that reference will be refreshed as soon as you export it again, either manually or
automatically.

Cache drop

Any change you make to the Better BibTeX preferences will drop the whole cache. The behavior of
the Better BibTeX exporters are highly configurable, and it is impossible for me to figure out which entries would be
affected specifically. Keep this in mind for large libraries; if you want to make changes to your configuration, make them all at once.

The same applies to upgrades. As the export behavior quite frequently changes between versions, Better BibTeX will drop
the cache during first startup of the newer version. This can be a nuisance if you have a large library, so if you have
a substantial cache (where 'substantial' is configurable by changing
confirmCacheResetSize), you will be asked whether you want to drop or retain your cache at this point.

Please do keep in mind that some new settings will not be reflected in your exports until the cache entry is
refreshed. This is a trade-off you will have to make. If you want to refresh a single entry, just change anything (and
back if you wish after), or go into the Better BibTeX debug settings and click "Reset Cache" to refresh them all.

If you have chosen to retain your cache and you are experiencing problems, please first clear your cache and try to
reproduce your problem before lodging an issue.

 Push Export

Push Export

When exporting using Better Bib(La)Tex you will be offered a new export option: Keep Updated. Checking this option
registers the export for automation; any changes to the collection after you've completed the current export will
trigger an automatic re-export to update the bib file. You can review/remove exports from the BBT preferences. While
I've gone to some lengths to make sure performance is OK, don't go overboard with the number of auto-exports you have
going. Also, exporting only targeted selections over your whole library will get you better performance. You can set up
separate exports for separate papers for example if you have set up a collection for each.

Pull Export

You can fetch your library as part of your build, using curl (for example by using the included zoterobib.yaml arara
rule), or with a BibLaTeX remote statement like
\addbibresource[location=remote]{http://localhost:23119/better-bibtex/collection?/0/8CV58ZVD.biblatex}. You can then fetch your bibliography on the url
http://localhost:23119/better-bibtex/collection?[collectionID].[format], where collectionID is:

	the ID you get by right-clicking your collection and selecting "Show collection key"

	the path "/[library id]/full/path/to/collection" (the library id is the first number from the key you get in the
option above; it's always '0' for your personal library)

or any multiple of those, separated by a '+' sign.

The format is either 'bibtex' or 'biblatex', and determines the translator used for export.

You can add options to the export as URL parameters:

	&exportCharset=<charset>

	&exportNotes=[true|false]

	&useJournalAbbreviation=[true|false]

 You wanted customized...

You wanted customized...

You got customized. If you go into the Advanced tab of the Better BibTeX preferences you will find a text box (empty by
default) where you can edit a javascript snippet which will be executed for each reference generated in the Bib(La)TeX
exporter. In this code, you have access to the reference just before it will be written out and cached. There is an API
to do this, and it's fairly stable, but usually you can just open a new issue and ask me to write it, and I'll add it
here (it's how the examples got here). Postscripts are available in 4 of the translators:

	BetterBibLaTeX

	BetterBibTeX

	BetterCSLJSON

	BetterCSLYAML

You can (and totally should) check in which translator your postscript is running, which you can do by testing for
Translator.<id> where <id> is one of these four names, using something like

if (Translator.BetterBibLaTeX) {
 ...
}

or alternately on the full name using a switch

switch (Translator.header.label) {
 case 'Better BibLaTeX':
 ...
 break;
 case 'Better BibTeX':
 ...
 break;
 case 'Better CSL JSON':
 ...
 break;
 case 'Better CSL YAML':
 ...
 break;
}

In the BetterBib(La)TeX context you will typically access this, which will
be undefined in the BetterCSL(JSON|YAML) context. In the BetterBib(La)TeX context, your Bib(La)TeX reference being built is
available as both this and reference; the source Zotero item is available both as this.item and item. In the BetterCSL(JSON|YAML) context,
the CSL object being built is available as reference and the the source Zotero item is available as item.

You should
really test for the translator context in your postscripts. If you don't because you have a postscript that pre-date CSL support, you will probably be using this.<something> in your
existing postscripts, which will make the script will non-fatally error out. So you're very probably good to go as-is.
But please fix your postscripts to test for the translator context.

The API (for the Better Bib(La)TeX context)

The postscript should be a javascript snippet. You can access the data with following objects or functions.

In BetterBibLaTeX and BetterBibTeX,

	this is the BibTeX reference you are building, and the reference has a number of fields.

	this.fields

	this.item is the Zotero item that's the source of the reference.

e.g. access the date in zotero item this.item.date.

	this.has is a dictionary of fields for output.

e.g. access the year in output this.has.year

	this.add is the function to add or modify keys in this.has. It will check check for unintentional duplicates (unless you specify explicitly with replace: true).

e.g. change the value of year in output this.add({name: 'year', replace: true, value: your_year_value})

In BetterCSLJSON and BetterCSLYAML:

	reference is the CSL object being built. Any changes made to this object will directly change the CSL object being output.

	item is the Zotero reference it's being built from.

Add accessdate, url for BibTeX

Since BibTeX doesn't really have well-defined behavior across styles the way BibLaTeX does, BBT can't generate URL data which is compatible with all BibTeX styles. If you know the style you use yourself, you can add the data in the format you want using a postscript. The script below will add a note for the last accessed date, and a \url tag within the howpublished field, but only for BibTeX, not for BibLaTeX, and only for webpage entries:

if (Translator.BetterBibTeX && this.item.itemType === 'webpage') {
 if (this.item.accessDate) {
 this.add({ name: 'note', value: "(accessed " + this.item.accessDate + ")" });
 }
 if (this.item.url) {
 this.add({ name: 'howpublished', bibtex: "{\\url{" + this.enc_verbatim({value: this.item.url}) + "}}" });
 }
 }

Comma's in keywords

If you want to retain commas in your keywords (e.g. for chemical elements) and separate with a comma-space, you could do:

if (Translator.BetterBibTeX || Translator.BetterBibLaTeX) {
 this.add({ name: 'keywords', replace: true, value: this.item.tags, sep: ', ' });
}

as the default encoder knows what to do with arrays, if you give it a separator.

Add DOI in note field

if ((Translator.BetterBibTeX || Translator.BetterBibLaTeX) && this.item.DOI) {
 var doi = this.item.DOI;
 if (doi.indexOf('doi:') != 0) { doi = 'doi:' + doi; }
 this.add({ name: 'note', duplicate: true, value: '[' + doi + ']' });
}

Add arXiv data

arXiv is a bit of an odd duck. It really isn't a journal, so it shouldn't be the journal title, and their own recommendations on how to include arXiv IDs is a little lacking: this [https://arxiv.org/help/faq/references] doesn't say where to include the arXiv:... identfier, and this [http://arxiv.org/hypertex/bibstyles/] says not to include it. Nor does it give any recommendations on how to achieve the desired output [https://arxiv.org/help/faq/references].

But for arguments' sake, let's say you get the desired output by including an empty journaltitle field (ugh) and stuff the arXiv:... ID in the pages field (ugh). You could do that with the following postscript:

if ((Translator.BetterBibTeX || Translator.BetterBibLaTeX) && this.item.arXiv.id) {
 this.add({ name: 'pages', value: this.item.arXiv.id });
 if (!this.has.journaltitle) { this.add({ name: 'journaltitle', bibtex: '{}' }); }
}

 <no title>

Sponsoring BBTWhile the development needs of BBT are to a large extent covered by the use of services such as github and circleci, my development system does require the occasional upgrade.
My trusty MacBook Air is not really hacking it anymore, and in order to do decent cross-platform support, a MacBook (or a system capable of running macOS in VMware player) is what I need. Anything you can spare [https://www.paypal.me/retorquere] towards making that upgrade a reality is very much appreciated. If you'd rather contribute a little bit each month (and a little means a lot) so I can save up for a replacement a year or so down the line, head on over to Patreon [https://www.patreon.com/retorquere]. Many, many thanks, also to the existing 21 contributors -- thanks to you I'm currently at 35% of target; so looking forward to replace my trusty manchineel.

 Getting support

Getting support

Before all else, thank you for taking the time for submitting an issue, and I'm sorry that I've probably
interrupted your flow.

Your report matters to me. I love hearing my software helps you, and it pains me to know that things aren't working for
you.

If you have any questions on the use of the plugin, please do not hesitate to file a GitHub issue to ask for help.

If you're reporting a bug in the plugin, please take a moment to glance through the Support Request Guidelines below; it will
make sure I get your problem fixed as quick as possible. The guidelines are very detailed, perhaps to the point of being off-putting, but please do not fret; these guidelines simply
express my ideal bug submission. I of course prefer very clearly documented issue reports over fuzzy ones, but I prefer
fuzzy ones over missed ones.

Submitting an issue

You can report problems with BBT by opening a new issue [https://github.com/retorquere/zotero-better-bibtex/issues/new] on github.
Unfortunately, my time is extremely limited for a number of very great reasons (you shall have to trust me on this). Because of this, I
cannot accept bug reports or support requests on anything but the latest version. By the time I get to your issue, the latest
version might have bumped up already, and you will have to upgrade (you might have auto-upgraded already however) and
re-verify that your issue still exists. Apologies for the inconvenience, but such are the breaks.

	You can send off an error report by choosing Report Better BibTeX Errors from the gear menu. Post the resulting ID
(displayed in red) in a github issue.

	You can send off an error report for a specific collection or (selection of) items that fails to export by selecting those, right-clicking
and choosing Report Better BibTeX Errors

That in itself will in many cases give me what I need. Don't forget to copy the generated ID to paste it into the github
issue; you cannot call it up later (although you can just do it again).

For the fastest fix:

	Please include specifics of what doesn't work. I use this plugin every day myself, so "it doesn't work" is trivially
false. Please tell me what you expected and what you see happening, and the relevant difference between them.

	Please don't file a jumble of problems in one issue. Posting a slew of separate issues is much preferred, as I can
more easily tackle them one by one.

	Do not hijack existing issues. You can chime in on existing issues if you're close to certain it is the same problem,
otherwise, open a new issue. I rather have duplicate issues than issues I cannot close because they are in fact two or
more issues.

	If your problem pertains to importing BibTeX files, you must put up a sample for me to reproduce the issue with.
Do not paste the sample in the issue, as the issue tracker will format it into oblivion. Instead, choose one of
these options:

	Post an URL in the issue where I can download your sample, or

	Put the sample in a gist [https://gist.github.com/] and post the URL of the gist into the issue

	If your problem pertains to BBT interfering with other plugins (which wouldn't be the first time), and this interference
has something to do with importing, you must include a sample file that triggers the issue. I know it may seem
that "any file triggers it" -- I need a specific file that does so I know we're looking at the same problem.

Known problems

	If Zotero stalls after installing BBT, it is often a one-time thing as the cache fills

 Translations

Translations

BBT is currently available in English and French. You can help out by adding new translations or fixing exist